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1. Introduction

Models of large [1 – 3] or warped [4, 5] extra dimensions allow the fundamental scale of

gravity to be as low as the electroweak scale. For energies above the gravity scale, black

holes can be produced in particle collisions. This opens up the possibility to produce black

holes at the Large Hadron Collider (LHC). Once formed, the black hole will decay by

emitting Hawking radiation [6]. The final fate of the black hole is unknown since quantum

gravity will become important as the black hole mass approaches the Planck scale. If black

holes are produced at the LHC, detecting them will not only test general relativity and

probe extra dimensions, but will also teach us about quantum gravity.

Early discussions of black hole production in colliders postulated a πr2
h form for the

cross section, where rh is the horizon radius of the black hole formed in the parton scattering

process [7 – 9]. Calculations based on classical general relativity have had limited success in

improving the cross section estimates [10, 11]. The effects of mass, spin, charge, colour, and

finite size of the incoming particles are usually neglected in these calculations. The effects

of finite size have been examined [12, 13] and only recently have angular momentum [14] or

charge been discussed [15]. Although these results are far from complete, they do indicated

that the simple geometric cross section is correct if multiplied by a formation factor of order

unity [16].

General relativistic calculations of the cross section have usually been performed using

the trapped-surface approach. The two incoming partons are modeled as Aichelburg-Sexl

shock waves [17]. Spacetime is flat in all regions of space except at the shocks. The union of
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these shock waves defines a closed trapped surface. Black hole formation can be predicted

by identifying a future trapped surface, with no need to calculate the gravitational field.

The trapped-surface approach was first applied to TeV-scale gravity calculations by

Eardley and Giddings [10] in four dimensions. Thier work was extended to the D-

dimensional case numerically by Yoshino and Nambu [11]. The numerical studies were

improved by Yoshino and Rychkov [14] by analyzing the closed trapped surface on a differ-

ent slice of spacetime. These general relativistic calculations have enabled lower limits to

be obtained for the black hole production cross section of colliding particles in TeV-scale

gravity scenarios.

Since black holes are highly massive objects, the momentum fraction of the partons in

the protons that form them must be high. Thus typically valence quarks will be involved

in black hole formation. This means the most probable charge of the black hole in proton

collisions will be +4/3. Since the gravitational field of each particle is determined by its

energy-momentum tensor, charge should affect the black hole formation. First exploratory

work by Yoshino and Mann [15] obtained a condition on the electric charges of the colliding

particles for a closed trapped surface to form. The results depend on the Standard Model

brane thickness. Since the LHC is about to start up, it is useful to investigate ideas, such

as these, that modify black hole production.

In this paper, we use the Yoshino and Mann charge condition in its general form and

build on their work by examining the effect of charge on black hole production at the LHC.

The cross section is obtained by summing over all possible parton pairs in the protons.

By using the parton density functions of the proton and applying the charge condition,

we obtain the black hole cross section. The amount of available energy that goes into the

black hole formation is also examined.

An outline of this paper is as follows. We first review the trapped-surface approach

in section 2. Then in section 3, we examine the Reissner-Nordström spacetime of charged

particles in higher dimensions. Following Yoshino and Mann [15], we obtain the condition

for an apparent horizon in section 4. Since electric charge is confined to the three-brane,

we relate the higher-dimensional charge in the Reissner-Nordström metric to the Standard

Model electric charge as the second step in our approach. We then translate the condition

for apparent horizon formation into a condition for charged partons to form a black hole

at the LHC. Lower limits on the amount of energy trapped behind the apparent horizon

are shown in section 5. In section 6, we apply the charge condition to the calculation of

the black hole cross section for different values of the Planck scale, number of dimensions,

and Standard Model brane thickness. We conclude with a discussion in section 7.

2. Trapped surfaces and apparent horizon

In this section, we review the concepts of Aichelburg-Sexl shock waves, trapped surfaces,

and the apparent horizon. A charged particle can be modelled using the Reissner-Nortsröm

metric. By boosting the Reissner-Nortström spacetime and taking the lightlike limit, we

obtain an approximation of a charged ultrarelativistic particle. The gravitational field of the

point massless particle is thus infinitely Lorentz contracted and forms a longitudinal plane-
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fronted Aichelburg-Sexl gravitational shock wave. Except at the shock wave, spacetime

is flat before the collision. By combining two Aichelburg-Sexl shock waves, we set up a

head-on collision of ultrelativistic particles. At the instance of collision, the two shock

waves pass through one another, and interact nonlinearly by shearing and focusing. After

the collision, the two shocks continue to interact nonlinearly with each other and spacetime

within the future lightcone of the collision becomes highly curved.

To describe this nontrivial collision process, we choose the lightcone coordinates u =

t − z and v = t + z. Four regions of spacetime can be identified.

Region I: u < 0, v < 0, before the collision,

Region II: u > 0, v < 0, after the wave at u = 0 has passed,

Region III: v > 0, u < 0, after the wave at v = 0 has passed,

Region IV: u > 0, v > 0, interaction region after the waves have passed.

Except at the shock waves, spacetime is flat in regions I, II, and III before the collision. No

one has been able to calculate the metric in the future of the collision (non-linear region

IV) except perturbatively in the distance far from the interaction u = v = 0 [18 – 20]. It

is possible to investigate the collision on the slice u ≤ 0, v = 0 and v ≤ 0, u = 0. It is

also possible to proceed with the analysis on the slice of the future lightcone of the shock

collision plane, given by the union of the outgoing shocks u = 0, v ≥ 0 and v = 0, u ≥ 0.

This is the future most slice that can be used without knowledge of region IV.

The different regions of spacetime can be examined for trapped surfaces. We search

for marginally trapped-surface formation on a slice of spacetime u = 0, v ≥ 0 and v = 0,

u ≥ 0. A marginally trapped surface is define as a closed spacelike (D − 2)-surface, the

outer null normals of which have zero convergence [21]. Moving a small distance inside

the marginally trapped surface one can find a true closed trapped surface with negative

convergence. In physical terms this means that there is a closed surface whose normal null

geodesics do not diverge, and so are trapped by gravity. For a Schwarzschild black hole, the

marginally trapped surface is a sphere around the singularity, which happens to coincide

with the event horizon [22].

An apparent horizon is the outermost marginally trapped surface. The existence of a

marginally trapped surface means either that the marginally trapped surface is the appar-

ent horizon, or that an apparent horizon exits in the exterior of the marginally trapped

surface. Existence of an apparent horizon implies the presence of a singularity in the future.

Assuming cosmic censorship [23], this singularity must be hidden behind an event horizon,

and we may conclude that a black hole will form. Moreover, the black hole horizon must lie

outside the closed trapped surface. Formation of the apparent horizon is then a sufficient

condition for formation of a black hole for which the event horizon is outside the apparent

horizon [24]. Thus if one can prove the existence of a trapped surface, then one knows that

in the future the solution will involve a black hole.

The area of a marginally trapped surface is a lower bound on the area of the apparent

horizon. Using this information, one can estimate the event horizon area and, via the area
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theorem [25], the mass of the formed black hole. Since the black hole horizon is always in

the exterior region, the trapped surface method gives only a lower bound on the final black

hole mass. The black hole mass can have any value between this bound and the centre of

mass energy of the collision.

3. D-Dimensional Reissner-Nordström spacetime

The Reissner-Nordström solution describing the gravitation field of a point particle of mass

m and electric charge q in D dimensions in spherical coordinates (T,R,Φ1, . . . ,ΦD−2) is

ds2 = −g(R)dT + g(R)−1dR2 + R2dΩ2
D−2 , (3.1)

where

g(R) = 1 − 2M

RD−3
+

Q2

R2(D−3)
, (3.2)

M =
8πGDm

(D − 2)ΩD−2
, (3.3)

Q2 =
8πGDq2

(D − 2)(D − 3)
, (3.4)

GD is the D-dimensional gravitational constant, and dΩD−2 and ΩD−2 are the line element

and volume of a (D − 2)-dimensional unit sphere, given by

ΩD−2 =
2π(D−1)/2

Γ[(D − 1)/2]
, (3.5)

where Γ is Euler’s Gamma function. The energy-momentum tensor used in Einstein’s

equation is that of the electromagnetic field in the spacetime that results from the charge

on the particle. The metric is a unique spherically symmetric asymptotically flat solution

of the Einstein-Maxwell equations and is locally similar to the Schwarzschild solution. The

Reissner-Nordström solution does not describe the spin, magnetic moment, or colour charge

of a particle.

The condition for the existence of an event horizon in D-dimensional Reissner-

Nordström spacetime (Q2 ≤ M2) is

|q| ≤ m

ΩD−2

√

8πGD(D − 3)

D − 2
. (3.6)

We will return to this condition after we have related the electric charge in higher-

dimensional Maxwell theory to the electric charge in four dimensions. For the moment,

we are ignoring that the electric charge of the particle is confined to the Standard Model

three-brane. We will consider the black hole production process as happening in flat D-

dimensional spacetime since the horizon radius is much small than the compactification

radius.
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Before Lorentz boosting the Reissner-Nordström metric, it is convenient to convert

the metric to isotropic coordinates (T̄ , Z̄, R̄, Φ̄1, . . . , Φ̄D−3), where T̄ = T , Z̄ = Z, R̄ =√
Z̄2 + r̄2, R2dΩ2

D−2 = dZ̄2 + dr̄2 + r̄2dΩ̄2
D−3, and

R = R̄

(

1 +
M

R̄D−3
+

M2 − Q2

4R̄2(D−3)

)

1

D−3

. (3.7)

When the Reissner-Nordström metric is boosted, the rest mass m and charge q are

fixed and boosted to a finite value of γ. In the ultrarelativistic limit (γ → ∞) both terms

in eq. (3.2) diverge unless we take both m and q to vanish in this limit. Thus, we boost

the Reissner-Nordström solution by taking the limit of large boost and small m with fixed

total energy

E = γm , (3.8)

and small q2 with fixed quantity

p2
e = γq2 . (3.9)

This is consistent with the lightlike limit of a particle with mass and electric charge. Choos-

ing the particle to move in the +Z direction in D-dimensional spacetime, the boosted

coordinates are (t, z, r, φ1, . . . , φD−3), where T̄ = γ(t − βz), Z̄ = γ(z − βt), r = R̄, and

φi = Φ̄i. After the transformation, we take the lightlike limit.

Next we define the retarded and advanced times (ū = t − z and v̄ = t + z, also r̄ = r

and φ̄i = φi) to obtain the coordinates (ū, v̄, r̄, φ̄1, . . . , φ̄D−3). This yields a finite result

that is the charged version of the D-dimensional Achelburg-Sexl metric [15, 26, 27]:

ds2 = −dūdv̄ + dr̄2 + r̄2dΩ̄D−3 + Φ(r̄)δ(ū)dū2 , (3.10)

where

Φ(r̄) =

{

−8GDE ln r̄ − 2a
r̄ (D = 4) ,

16πGDE
(D−4)ΩD−3r̄D−4 − 2a

(2D−7)r̄2D−7 (D ≥ 5) ,
(3.11)

and

a =
2π(4πGDp2

e)

D − 3

(2D − 5)!!

(2D − 4)!!
. (3.12)

The charge dependence is entirely contained in the general charge parameter a. The func-

tion Φ depends only on the transverse radius r̄ =
√

x̄ix̄i. The Aichelburg-Sexl metric is

a solution for a point particle (delta function source) moving at the speed of light. The

metric eq. (3.10)–(3.12) reduces to the usual Aichelbrg-Sexl metric in the limit q → 0. For

the particles we will consider in this study, γ & 5 × 103 and the mean value of γ is about

7 × 105. The charged version of the Aichelberg-Sexl metric is thus a good approximation

to an ultrarelativistic massive charged particle with finite, but large, γ.

The delta function in eq. (3.10) indicates that the (ū, v̄, r̄, φ̄i) coordinates are discon-

tinuous at ū = 0. These coordinates are unsuitable for analysing the behaviour of geodesics

crossing the shock at ū < 0, which is necessary for understanding the causal structure. In

the following, we define

r0 =

(

8πGDE

ΩD−3

)
1

D−3

≡ 1 (3.13)
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as the unit of length. We introduce new coordinates (u, v, r, φi), which are continuous and

smooth across the shock using the transformations

ū = u , (3.14)

v̄ = v + F (u, r) , (3.15)

r̄ = G(u, r) , (3.16)

φ̄i = φi , (3.17)

where F (u, r) = 0 and G(u, r) = r for u < 0. In these coordinates, we require v, r, and

φi equal a constant to be a null geodesic with affine parameter u. The metric in these

coordinates becomes

ds2 = −dudv + G2
,rdr2 + G2dΩ2

D−3 , (3.18)

where G and G,r are explicitly given by [15]

G = r +
uθ(u)

rD−3

(

1 − a

rD−3

)

, (3.19)

G,r = 1 + (D − 3)
uθ(u)

rD−2

(

1 − 2a

rD−3

)

, (3.20)

where θ(u) is the Heaviside step function. Both geodesics and their tangents are now

continuous across the shock, and two coordinate singularities appear in the region u > 0.

These singularities have been analyzed in ref. [15].

4. Condition for apparent horizon formation

To setup the two-particle head-on collision, we consider a second identical shock wave

traveling along v̄ = 0 in the −Z direction. By causality, the two shock waves will not be

able to influence each other until the shocks collide. This means that we can superimpose

two of the above solutions to give the exact geometry outside the future lightcone of the

collision of the two shocks. We assume without loss of generality that the two particles

have the same energy E but different charge parameters p
(1)
e and p

(2)
e .

In the remainder of this section, we follow Yoshino and Mann [15] directly in studying

the apparent horizon on the slice u > 0, v = 0 and v > 0, u = 0. The closed trapped surfaces

are symmetric under rotation of the transverse directions and the reflection z → −z.

Because the system is axisymmetric, the location on the apparent horizon surface on each

side of z is given by a function of r. We assume the apparent horizon is given by the union

of two surfaces S1 and S2, where

S1 : u = h(1)(r) (rmin ≤ r ≤ r(1)
max) on u ≥ 0 and v = 0, (4.1)

S2 : v = h(2)(r) (rmin ≤ r ≤ r(2)
max) on v ≥ 0 and u = 0, (4.2)

where h(1) and h(2) are monotonically increasing functions of r. When S1 and S2 cross

u = v = 0, r = rmin. Continuity of the metric at the apparent horizon requires S1 and S2

to coincide with each other at u = v = 0. At r
(1)
max and r

(2)
max, we require h(1)(r) and h(2)(r)

– 6 –
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Figure 1: Representative cases for the quartic equation f(x) = x4 − (x − a1)(x − a2).

to cross the coordinate singularity. The surface becomes a closed trapped surface by the

above arguments.

Following Yoshino and Mann [15], one derives the equations for h(1)(r) and h(2)(r),

and the differential equation for the apparent horizon is then obtained. The boundary

condition that must be imposed at r = rmin is

h(1)
,r (rmin)h

(2)
,r (rmin) = 4 , (4.3)

where both h
(1)
,r (rmin) and h

(2)
,r (rmin) are positive. Using this boundary condition, the

apparent horizon equation is solved and the boundary condition become

x4 = (x − a1)(x − a2) , (4.4)

where x ≡ rD−3
min . This equation determines the value of rmin. The apparent horizon exists

if, and only if, there is a solution to eq. (4.4) with x > a1 and x > a2.

4.1 Condition on general charges

The special cases of collisions of particles with the same charge, and collisions of a charged

and a neutral particle have been previously examined [15]. We examine the case of general

charge parameters and note the simplifying cases.

Equation (4.4) has four roots. For a1 > 0 and a2 > 0 two solutions will have x < a1

and x < a2, and not correspond to an apparent horizon. We investigate the other two

solutions. Figure 1 shows two representative cases of eq. (4.4). We see that an apparent

horizon exists if, and only if, the local minimum in the x > 0 region is less than or equal to

zero. The location of the minium is given by differentiating the quartic equation, eq. (4.4),

and solving the resulting cubic equation for the positive root. The solution is

x =

√

2

3
cos

(

π − θ

3

)

, (4.5)
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Figure 2: Region of the apparent horizon formation in the (a1, a2)-plane.

where

tan θ =

√

(

2

3

)3 1

(a1 + a2)2
− 1 . (4.6)

Substituting this value into eq. (4.4) and drawing the contour, we find the region for

apparent horizon formation in the (a1, a2)-plane, as shown in figure 2. We see that both

a1 and a2 must be sufficiently small for apparent horizon formation. For two particles of

equal charge: a1 = a2 = 1/4 gives x = 1/2, which is a solution of eq. (4.4). For one charged

particle and one neutral particle: a1 = a = 2/(3
√

3) and a2 = 0 gives x = 1/
√

3, which is

also a solution of eq. (4.4).

We can understand the requirement on a1 and a2 physically as follows. Since a1 and a2

are proportional to (p
(1)
e )2 and (p

(2)
e )2, the condition derived in eq. (4.4) does not depend on

the sign of the charge of either particle. This is because the gravitational field due to each

charge is generated by an electromagnetic energy-momentum tensor T
(em)
µν ∼ p2

eδ(ū)/r̄2D−5

that depends on the square of the charge. The gravitational field induced by T
(em)
µν of

the incoming particles is repulsive, and its affect becomes dominant around the centre.

As the value of a increases, the repulsive region becomes larger, preventing formation of

the apparent horizon. The critical value of a for apparent horizon formation occurs when

the repulsive gravitational force due to the electric field becomes equivalent to the self-

attractive force due to the energy of the system.

4.2 Condition on parton electric charges

The approach for handling the confinement of the electric field to the Standard Model

three-brane is far from clear. So far, we have ignored this effect by using the D-dimensional
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Einstein-Maxwell theory. Assuming the boosted Reissner-Nordström metric represents the

gravitational field of an elementary particle with electric charge moving at high speed, we

develop the relationship between the electric charge in four dimensions q4 and the charge

in higher-dimensional Maxwell theory q. For two particles in D dimensions with the same

charge at rest, for example, the force between them is

F =
q2

rD−2
. (4.7)

Since we have been using Gaussian units, the factor of 1/ΩD−2 (1/4π in the case of four

dimensions) is absorbed into the definition of the charge. If the gauge fields are confined to

the Standard Model brane, the only characteristic length scale is the width of the brane,

which should be of the order of the Planck length. We introduce the constant Cbrane:

1

MD
→ Cbrane

MD
, (4.8)

where Cbrane is a dimensionless quantity of order unity. For sufficiently large r,

F → q2

r2

(

MD

Cbrane

)D−4

=
q2
4

r2
. (4.9)

This condition is reasonable since the Compton wavelength 1/MD of the black hole is much

smaller than its horizon radius rh. Thus

q2 = q2
4

(

Cbrane

MD

)D−4

. (4.10)

The brane thickness is a measure of how confined the Standard Model electric charge is to

the brane. If the brane is thick, the Maxwell theory would be higher dimensional in the

neighbourhood of the particle. We let

q2
4 = C2

q α , (4.11)

where Cq is the charge in units of elementary charge e (−1/3 or +2/3 for quarks and 0 for

gluons) and α is the fine structure constant. Our treatment of the electric charge has not

fully taken into account the effects of confinement of the electric field on the brane. We

have also ignored the brane tension and the structure of the extra dimensions.

Using eq. (4.10), eq. (4.11),

G−1
D =

8π

(2π)D−4
MD−2

D , (4.12)

and recalling the definition of the volume of the (D − 2)-dimensional unit sphere given by

eq. (3.5), we obtain for eq. (3.12)

a

r
2(D−3)
0

= C2
q α

(

MD

m

)(

MD

E

)

π
Ω2

D−3

D − 3

(2D − 5)!!

(2D − 4)!!

(

Cbrane

2π

)D−4

, (4.13)

where we have reintroduced the unit length r0. Choosing values for α and m, we can use

eq. (4.13) to study the condition for apparent horizon formation as a function of D, MD,

and Cbrane. An apparent horizon will not occur at the instance of collision if the brane

is thick or if the spacetime dimensionality is low. Charge effects will not be significant at

high energies.
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5. Trapped energy

We now consider how much energy is trapped behind the horizon in black hole formation

from charged-particle collisions. From section 2, we saw that the event horizon must be

outside the apparent horizon. The area theorem [25] states that the event horizon area can

never decreases. Hence, we naturally expect the apparent horizon mass to be defined by

MAH =
(D − 2)ΩD−2

16πGD

(

AD−2

ΩD−2

)
D−3

D−2

, (5.1)

where AD−2 is the (D − 2)-dimensional area of the apparent horizon give by

AD−2 =
2

D − 2
ΩD−3r

D−2
0 x

D−2

D−3 . (5.2)

This mass provides a lower bound on the mass of the final black hole, and thus MAH is

an indicator of the energy trapped behind the event horizon. The parameter x can be

considered to be a function of a1 and a2, with x = 1 for a1 = a2 = 0. The results of

Eardley and Giddings [10] are reproduced for the case of two neutral particles.

Figure 3 shows the behaviour of MAH/
√

ŝ as a function of a1 and a2 for D = 4, where√
ŝ is the centre of mass energy of the collision. We find that MAH/

√
ŝ decreases slowly

with increasing a, but drops rapidly near the maximum value of a. Figure 4 (particles

of same charge) and figure 5 (one neutral particle) show the behaviour of MAH/
√

ŝ as a

function of a for different values of the number of dimensions. The horizon mass decreases

with increasing number of dimensions. In the higher-dimensional spacetime, the amount

of energy trapped behind the horizon decreases because the gravitational field distributes

in the space of the extra dimensions and only a small portion of the total energy of the

system can contribute to the horizon formation. The non-trapped energy will be radiated

away quickly after the formation of the black hole.

6. Effect of charged partons on the cross section

The classical black hole cross section at the parton level is

σ̂ab→BH = πr2
h , (6.1)

where rh depends on the mass of the black hole MBH, the spacetime parameters D and

MD, and a and b are the parton types.

Only a fraction of the total centre of mass energy
√

s in a proton-proton collision is

available in the parton scattering process. We define

sxaxb ≡ sτ ≡ ŝ , (6.2)

where xa and xb are the fractional energies of the two partons relative to the proton energies.

The total cross section can be obtained by convoluting the parton-level cross section with

the parton distribution functions (PDFs), integrating over the phase space, and summing
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Figure 3: Relation between the horizon mass MAH/
√

ŝ and the charge parameters a1 and a2 for

D = 4.

over the parton types. Assuming all the available parton energy
√

ŝ goes into forming the

black hole, the full particle-level cross section is

σpp→BH+X(MBH) =
∑

a,b

∫ 1

M2

BH
/s

dxa

∫ 1

M2

BH
/(xas)

dxbfa(xa)fb(xb)σ̂ab→BH(ŝ = MBH) , (6.3)

where fa and fb are PDFs for the proton. The sum is over all possible quark and gluon

pairings.

Throughout this paper we use the CTEQ6L1 (leading order with leading order αs)

parton distribution functions [28] within the LHAPDF framework [29]. The momentum

scale for the PDFs is set equal to the black hole mass for convenience.

In terms of the parton luminosity (or parton flux), we write the differential form of

eq. (6.3) as
dσpp→BH+X

dMBH
=

dL

dMBH
σ̂ab→BH , (6.4)

where
dL

dMBH
=

2MBH

s

∑

a,b

∫ 1

M2

BH
/s

dx

x
fa

(τ

x

)

fb(x) . (6.5)
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Figure 4: Relation between the horizon mass MAH/
√

ŝ and the charge parameters a1 = a2 = a

(particles of equal charge) for D = 4, . . . , 11.
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Figure 5: Relation between the horizon mass MAH/
√

ŝ and the charge parameters a1 = a and

a2 = 0 (one neutral particle) for D = 4, . . . , 11.

The differential cross section thus factorizes. It can be written as the product of the parton

cross section times a luminosity function. The parton cross section σ̂ab→BH is independent

of the parton types and depends only on the black hole mass, Planck scale, and number of

– 12 –



J
H
E
P
0
2
(
2
0
0
7
)
0
9
8

 (TeV)BHMBlack hole mass, 
2 4 6 8 10

)
-1

 (
T

eV
B

H
dL

/d
M

P
ar

to
n 

lu
m

in
os

it
y,

 

-910

-810

-710

-610

-510

-410

-310

-210

-110

1
all partons

valence quarks and gluons

valence quarks only

gluons only

Figure 6: Different contributions to the parton luminosity function versus black hole mass.

dimensions. The parton luminosity function contains all the information about the partons.

Besides a dependence on the black hole mass, it is independent of the characteristics of the

higher-dimensional space, i.e. the Planck scale and number of dimensions. The dependence

of the black hole mass occurs only in the proportionality and the limit of integration.

The transition from the parton-level to the hadron-level cross section is based on a

factorization formula. The validity of this formula for the energy region above the Planck

scale is unclear. Even if factorization is valid, the extrapolation of the parton distribution

functions into this transplanckian region based on Standard Model evolution from present

energies is questionable, since the evolution equations neglect gravity.

For a fixed proton-proton centre of mass energy, the parton luminosity function can be

pre-calculated to obtain a function depending only on a single mass parameter. Figure 6

shows the parton luminosity function versus black hole mass for
√

s = 14 TeV for different

partons in the sum of eq. (6.5). The solid line is for all partons, include sea quarks and

gluons. The dashed line shows the luminosity with the sea quarks removed. The doted

line shows the luminosity with the sea quarks and gluons removed, and the dash-dotted

line is for only gluons. Figure 6 indicates that to a good approximation, we can ignore the

contribution from the sea quarks at high black hole masses. The gluon-only contribution

is the lower bound on the luminosity function when the charged quarks do not contribute

to the cross section.

Throughout the remainder of this analysis, we ignore the contribution to the cross

section from the sea quarks. We work with parton luminosity, which is independent of D

and MD. Only the condition on which quarks to include in the sum of eq. (6.5) depends on

D and MD. Thus the upper and lower bounds on the parton luminosity do not change for
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Figure 7: Histrogram of values of the particle charges a1 and a2 in proton-proton collisions with

D = 11, MD = 1.75TeV, and Cbrane = 1.

different parameters. We take the running of the coupling constant into account; α ranges

from about 1/126 to 1/122 over a black hole mass range of 1 TeV to 10 TeV. We choose

α equal to 1/124 in the following calculations. Because of the large momentum transfer

in black hole production, we use current quark masses. Quark masses of md = 8MeV

and mu = 4 MeV are chosen for the valence quarks in the proton. To study eq. (6.5), we

must first boost the partons to the equal-energy frame to calculate eq. (4.13), and then

determine if the condition in figure 2 is satisfied. If it is, the parton pair is included in the

sum in eq. (6.5).

Figure 7 shows the distribution of values of the charges a1 and a2 for 11 dimensions,

a Planck scale of 1.75 TeV, and a brane thickness of 1. Distributions for same charges,

different charges, and one neutral parton combinations are clearly visible. The distributions

fall off with increasing values of a. The maximum values of a1 and a2 depend on the higher-

dimensional spacetime parameters D, MD, and Cbrane. The bin representing gluon-gluon

collisions (a1 = a2 = 0) is surrounded by a region (not visible) of no events. This vacated

region increases with increasing Planck scale.

Figure 8 shows the parton luminosity for different brane thicknesses for 11 dimensions

and a Planck scale of 1 TeV. The top curve is the case when all the partons contribute to
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Figure 8: Parton luminosity function versus black hole mass with the charge condition applied

for different brane thicknesses for D = 11 and MD = 1TeV. The numbers on the plot show the

different parton contributions to the parton luminosity function.

the cross section, while the lower curve is the case when only the neutral gluons contribute

to the cross section. The contributions of the different quarks in the intermediate region

depends on MBH, D, MD, and Cbrane. The thresholds for different quarks to contribute

occur as a function of MBH for fixed D, MD, and Cbrane. The location of the thresholds

may or may not occur in the mass region of our plot. From figure 8, we see that charge

can affect any black hole mass and the effect is very sensitive to the brane thickness. The

decrease in parton luminosity, and thus cross section, can range from about one to four

orders of magnitude over a black hole mass range of 1− 10 TeV due to charge effects. The

cross section is nontrivial only over a range of brane thicknesses from 1.1 to 2.2. Plots with

different number of dimensions are similar to figure 8; they are always bounded above and

below by the same values, but for different values of the brane thickness.

For each number of dimensions, we determine the maximum brane thickness for all

partons to be included in the parton luminosity and the minimum brane thickness for only

gluons to be included in the parton luminosity. The results are shown in figure 9. For a

thin brane, the cross section is not affected for high dimensions. For a thick brane, the

cross section is reduced for most number of dimensions. For a Planck scale of 1 TeV and a

brane thickness of 1 TeV−1, the cross section is minimal for D . 8, not affected for D & 11,

and has a range of values in the region 9 . D . 10.

Using the definition of the Planck scale and electric charge, we find that the condition
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are for MD = 5TeV. No quarks contribute to the cross section in the region above the solid curves.

The cross section is not affect by the charge condition below the region of the dashed curves. Some

quarks contribute to the cross section in the region between the different curve types.

D 4 5 6 7 8 9 10 11

Cbrane NA 0.8 1.8 2.5 3.1 3.5 4.1 4.4

Table 1: Maximum brane thicknesses for a Reissner-Nordström black hole to form.

for a Reissner-Nordström horizon, eq. (3.6), becomes

|Cq1
+ Cq2

| ≤ MBH

MD

1√
αΩD−2

√

D − 3

D − 2

(

2π

Cbrane

)
D−4

2

. (6.6)

This inequality is satisfied for D > 4 provided the brane is not too thick. This result is

contradictory to ref. [30], where the effect of the Standard Model confinement to the three-

brane seems to have been ignored. Table 1 shows upper bounds on the brane thickness for

the inequality in eq. (6.6) to be satisfied. However, the natural thickness of the brane in

models with low-scale quantum gravity can not be much larger than Cbrane = 1, and thus

it appears that the condition will always be satisfied for most natural values of the brane

thickness. Our previous results indicated that a collision of two partons may not form a

black hole even though the condition for a Reissner-Nordström horizon is satisfied. This is

because eq. (6.6) is a necessary, but not sufficient, condition for black hole formation.

The uncertainties in our analysis are large and particular values for the brane thick-

nesses obtained in this section should be taken with caution. However, the trends in values
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of brane thicknesses should be indicative of a more accurate formulation of the effects of

charge on the black hole cross section.

7. Discussion

The electromagnetic interaction between the quarks could enhance or degrade black hole

formation depending on the sign of the charges involved. Collisions between like-signed

charged quarks will degrade black hole formation, while collisions between opposite-signed

charged quarks will enhance black hole formation. It is not possible to know how effective

the electromagnetic interaction is without directly computing the subsequent temporal

evolution of the system.

The apparent horizon analysis was carried out in a regime where QED effects may be

important and could restrict the reliability of the metric. QED effects become important

when the exterior electrostatic energy of a point charge is equal to its rest mass. This

condition can be written as

a

r
2(D−3)
0

.
πΩD−3(2D − 5)!!

ΩD−2(2D − 4)!!
. (7.1)

The values of the right hand side range from 0.56 to 0.68 for 4 ≤ D ≤ 11. Since the

apparent horizon occurs below a = 2/(3
√

3) = 0.38, the condition given by eq. (7.1) is

always satisfied. However, the condition for the importance of QED effects is a sufficient

condition, not a necessary condition. It is possible that QED effects are important in the

neighbourhood of the equality in eq. (7.1). We can not be sure if QED effects suppress or

enhance the repulsive charge effect we have obtained.

Taking the boosted Reissner-Nordström metric as a reasonable description of ultarel-

ativistic quarks, we have shown that charge effects will significantly decrease the rate of

black hole formation at the LHC, if the brane is somewhat thick or if the dimensionality D

is not too large. The charge effects can be quite large because the electromagnetic energy-

momentum tensor is proportional to p2
e ∼ γα and the Lorentz factor γ is much larger than

1/α for ultrarelativistic quarks.

By using parton luminosity we have not had to specify the parton-level black hole cross

section. As long as the cross section depends only on MBH, D, and MD, our results should

be applicable for any form of the parton-level cross section.

There remains a possibility that a black hole will form under collision even if there is

no apparent horizon on the slice we considered, because apparent horizon formation is only

a sufficient condition for black hole formation. In order to specify more detailed criteria for

black hole formation, it will be necessary to study the temporal evolution of spacetime after

the collision. The inclusion of the spin of the incoming particles is also required. Inclusion

of QED effects and brane effects on gauge-field confinement may also be necessary.
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